Život na toxických ostrovech
Půdy kontaminované těžkými kovy se zpravidla nacházejí v okolí důlních ložisek, skládek nebo továren. Méně se však ví, že podobně toxická stanoviště se v přírodě vyskytují i zcela přirozeně.
0x Biolog
Každá hornina na Zemi vzniká v jejím magnetickém poli, a toto pole se otiskuje do feromagnetických složek horniny. Jak je tedy možné, že v horninách v okolí impaktových kráterů je tomu jinak?
Poblíž impaktových kráterů se po celém světě často nacházejí (mimo jiné) tzv. obří kužele (angl. shatter cones). Tyto kužele jsou vlastně systémy makroskopických i mikroskopických trhlin v hornině a vznikají šířením silné šokové elastické vlny. Představují něco jako „podpis“ impaktu mimozemského tělesa.
A právě takové kužele si z Nového Mexika přivezl geofyzik Günther Kletetschka, aby je podrobil analýze z hlediska magnetických vlastností. „Vzhledem k tomu, že se odborně dlouhodobě věnuji tematice impaktů, odvezl jsem vzorky hornin ze Spojených států do Prahy. Společně s mými dvěma doktorskými studenty Hakanem Ucarem a Radanou Kavkovou jsme se nejprve zaměřili na zkoumání magnetických vlastností vzorků,” vzpomíná Kletetschka.
Horniny si v sobě uchovávají nejen informaci o exsitenci magnetického pole, ale rovněž o jeho intenzitě. Ta se během historie Země zatím v podstatě neměnila a její hodnota se pohybuje kolem 50 000 nT. A nikdy nezeslábla pod 5000 nT. Při analýze kuželů se však jejich hodnoty vykazují pole nižší než 5000 nT. Odlišná byla i struktura magnetických vlastností jednotlivých magnetických zrn, které jsou v nich rozprostřené. Jak ale k něčemu takovému došlo?
Jako první se nabízelo vymazání magnetické paměti horniny vysokou teplotou. To, že by hornina prošla teplotou vyšší než 450 °C, bylo však možné vyloučit – prozradila to přítomnost jistých minerálů, které by v hornině poté, co prošla vyššími teplotami, přítomné být neměly. Je ale možné, že by anomálie patrné v horninách byly způsobeny „jen“ mechanickou šokovou vlnou, která se šíří tělesem v důsledku přeměny kinetické energie dopadajícího tělesa? V takovém případě bychom museli být svědky toho, že by starší magnetické informace v hornině byla „přepsána“ a nahrazena novou. Ale ani takový stav vědci nepozorovali. Zdálo se, jako by magnetické pole Země bylo něčím odstíněno.
Odstínění magnetického pole Země však není snadná věc – i pro účely vědeckých experimentů je umělá příprava takového stavu velmi komplikovanou záležitostí. Jedním z postupů je zchlazení olověného pytlíku na teplotu kapalného helia, kdy se pytlík stane tzv. supervodivým a elektronům v povrchu pytlíku pak není kladen žádný odpor. Když takový pytlík při této teplotě nafoukneme, vzniká uvnitř dokonalá magnetická prázdnota. Magnetické pole Země sjede po povrchu pytlíku a uvnitř nechá dokonalé magnetické vakuum. Je něco takového možné v situaci impaktu meteoritu? Aby se nad kráterem vytvořil podobný „pytlík“? Kde by se ale takový vodivý pytlík vzal? Teoreticky by mohlo jít o pytlík z plazmy, tedy o bublinu ionizovaného plynu, jehož vznik impakt mimozemského tělesa provází. Tuto teoretickou úvahu však bylo třeba ověřit experimentem.
Při něm byla klíčová speciální slitina, která po podchlazení na 77 Kelvinů (tedy po namočení do kapalného dusíku) získává supravodivé vlastnosti. V okolí desky, tvořené touto slitinou, se vytvoří prostor, kde pohyb elektronů nic nebrzdí – analog plazmy, kterou bylo třeba pro experiment získat. Pod takto vytvořenou desku bylo možno umístit magnetometr a zjišťovat, zda skutečně dojde k odstínění magnetického pole Země, jak předpokládala teorie. A experiment skutečně tuto představu potvrdil! Elektricky vysoce vodivá deska skutečně dokáže vytvořit magnetické pole, které kompenzuje magnetické pole Země. Důsledkem je vymazání magnetických informací, které byly uloženy v horninách od doby jejich vzniku.
„Další nepřímé důkazy, podporující závěry našeho vědeckého týmu, lze vyčíst z měření magnetických stanic, provázejících gigantické exploze typu Tunguské události či testování jaderných bomb. V době výbuchu se magnetické pole Země v daném místě snížilo,” dodává doc. Kletetschka, který se v minulosti věnoval i analýzám v oblasti Tungusky na Sibiři.
Mgr. Michal Andrle, Ph.D.
Gunther Kletetschka, Radana Kavkova, Hakan Ucar. Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe, New Mexico. Scientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-01451-8
Půdy kontaminované těžkými kovy se zpravidla nacházejí v okolí důlních ložisek, skládek nebo továren. Méně se však ví, že podobně toxická stanoviště se v přírodě vyskytují i zcela přirozeně.
0x Biolog
Zrod krásných zelených tektitů, nalézaných především v jižních Čechách a na jižní Moravě, proběhl za velice dramatických okolností na západě dnešního Bavorska.
0x Geolog
Je to hrozně jednoduché, stačí se zaregistrovat, vyplnit o sobě všechny údaje a my ti pošleme Kartu přírodovědce s tvým jménem, na kterou můžeš čerpat mnoho výhod.
Katalog pro učitele je nabídkový systém, kde si zaregistrovaný učitel může zapůjčit odborné přístroje, objednat praktická cvičení nebo přednášky pro studenty.